Home
Members
Research Topics
Publications
Microscopy Construction
Images, Movies, & Presentations
Virtual Lab Tour

Publications
Journal Articles
Journal Covers
Recent Abstracts
Books & Book Chapters-reviews




Publications

Journal Articles


1977-1982

1983-1988

1989-1994

Seventeen Papers
from the Parker Lab have been
evaluated by the
Faculty of 1000!



*Citation Statistics.
Numbers in red indicate the citation count of each article as of September 2020 (Google Scholar).
Total citations (May 2023) 27,016: 76 papers with >100 citations :
'h' index =86 (number of articles that have each been cited at least h times: see PNAS article by Hirsch) .

Click HERE for Google Scholar citation profile

Click HERE for full CV (Word file)

1977-1982

1) Miledi R, Parker I, and Schalow G. Measurement of calcium transients in frog muscle by the use of arsenazo III. Proc. Roy. Soc. B 198; 201-210, 1977. [PDF] 146

2) Miledi R, Parker I and Schalow G. Calcium transients in frog slow muscle fibres. Nature, 268;750-752, 1977. [PDF] 56

3) Suarez-Kurtz G and Parker I. Birefringence signals and calcium transients in skeletal muscle. Nature, 270;746-748, 1977.[PDF] 47

4) Miledi R, Parker I, and Schalow G. Transition temperature of excitation-contraction coupling in frog twitch muscle fibres. Nature, 280; 326-328, 1979. [PDF] 20

5) Bregestovski PD, Miledi R, and Parker, I. Calcium conductance of acetylcholine-induced endplate channels. Nature, 279;638-639, 1979.[PDF] 111

6) Miledi R, Parker I. and Schalow G. Transmitter induced calcium entry across the post-synaptic membrane at frog end-plates measured using arsenazo III. J. Physiol. 300;197-212, 1980. [PDF] 94

7) Miledi R and Parker I. Effects of strontium ions on end-plate channel properties. J. Physiol. 306;567-577, 1980. [PDF] 32

8) Bregestovski PD, Miledi R, and Parker I. Blocking of frog endplate channels by the organic calcium antagonist D600. Proc. Roy. Soc. B 211;15-24, 1980. [PDF] 35

9) Miledi R and Parker I. Blocking of acetylcholine induced channels by extracellular or intracellular application of D600. Proc. Roy. Soc. B 211;143-150, 1980. [PDF] 20

10) Miledi R, Nakajima S, and Parker I. Endplate currents in sucrose solution. Proc. Roy. Soc. B 211;135-141, 1980.[PDF] 7

11) Miledi R and Parker I. Calcium transients recorded with arsenazo III in the presynaptic terminal of the squid giant synapse. Proc. Roy. Soc. B 212;197-211, 1981. [PDF] 70

12) Miledi R, Parker I, and Schalow G. Calcium transients in normal and denervated slow muscle fibres of the frog. J. Physiol. 318;191-206, 1981. [PDF] 31

13) Miledi R, Nakajima S, Parker I, and Takahashi T. Effects of membrane polarization on sarcoplasmic calcium release in skeletal muscle. Proc. Roy. Soc. B 213;1-13, 1981. [PDF] 30

14) Cull-Candy SG, Miledi R, and Parker I. Single glutamate-activated channels recorded from locust muscle fibres with perfused patch-clamp electrodes. J. Physiol. 321;195-210, 1981. [PDF] 151

15) Miledi R. and Parker I. Diltiazem inactivates acetylcholine-activated channels in skeletal muscle fibres. Biomed Res., 2;587-589, 1981. [PDF] 9

16) Cull-Candy SG and Parker I. Rapid kinetics of single glutamate receptor channels. Nature, 295;410-412, 1982. [PDF] 90

17) Miledi R, Parker I, and Zhu PH. Calcium transients evoked by action potentials in frog twitch muscle fibres. J. Physiol. 333;655-679, 1982. [PDF]80

18) Miledi R, Parker I, and Sumikawa K. Properties of acetylcholine receptors translated by cat muscle mRNA in Xenopus oocytes. EMBO Journal, 1;1307-1312, 1982. [PDF] 109

19) Miledi R, Parker I, and Sumikawa K. Synthesis of chick brain GABA receptors by frog oocytes. Proc. Roy. Soc. B 216;509-515, 1982. [PDF] 108


1983-1988

20) Miledi R, Parker I, and Sumikawa K. Recording of single g-aminobutyrate and acetylcholine-activated channels translated by exogenous messenger RNA in Xenopus oocytes. Proc. Roy. Soc. B 218;481-484, 1983. [PDF] 63

21) Miledi R, Parker I, and Zhu PH. Calcium transients in frog skeletal muscle fibres following conditioning stimuli. J. Physiol. 339;223-242, 1983. [PDF] 30

22) Miledi R, Parker I, and Zhu PH. Calcium transients studied under voltage-clamp control in frog twitch muscle fibres. J. Physiol. 340;649-680, 1983. [PDF] 45

23) Miledi R, Parker I, and Zhu PH. Changes in threshold for calcium transients in frog skeletal muscle fibres owing to calcium depletion in the T-tubules. J. Physiol. 344;233-241, 1983. [PDF] 10

24) Gundersen CB, Miledi R, and Parker I. Serotonin receptors induced by exogenous messenger RNA in Xenopus oocytes. Proc. Roy. Soc. B 219;103-109, 1983. [PDF] 199

25) Gundersen CB, Miledi R, and Parker I. Voltage-operated channels induced by foreign messenger RNA in Xenopus oocytes. Proc. Roy. Soc. B 220;131-140, 1983. [PDF] 120

26) Gundersen CB, Miledi R, and Parker I. Glutamate and kainate receptors induced by rat brain messenger RNA in Xenopus oocytes. Proc. Roy. Soc. B 221;127-143, 1984. [PDF] 142

27) Miledi R, Parker I. and Zhu PH. Extracellular ions and excitation-contraction coupling in frog twitch muscle fibres. J. Physiol. 351;687-710, 1984. [PDF] 57

28) Gundersen CB, Miledi R, and Parker I. Messenger RNA from human brain induces drug-and voltage-operated channels in Xenopus oocytes. Nature, 308;421-424, 1984. [PDF] 207

29) Gundersen CB, Miledi R, and Parker I. Slowly inactivating potassium channels induced in Xenopus oocytes by messenger ribonucleic acid from Torpedo brain. J. Physiol. 353;231-248, 1984. [PDF] 23

30) Gundersen CB, Miledi R, and Parker I. Properties of human brain glycine receptors expressed in Xenopus oocytes. Proc. Roy. Soc. B 221;235-244, 1984. [PDF] 77

31) Czternasty G, Thieffry M, and Parker I. Calcium transients in a crustacean motoneurone soma: Detection with arsenazo III. Experientia, 40;106-108, 1984. [PDF] 5

32) Sumikawa K, Parker I, Amano T, and Miledi R. Separate fractions of mRNA from Torpedo electric organ induce chloride channels and acetylcholine receptors in Xenopus oocytes. EMBO Journal, 3;2291-2294, 1984. [PDF] 45

33) Miledi R and Parker I. Chloride current induced by injection of calcium into Xenopus oocytes. J. Physiol. 357;173-183, 1984. [PDF] 411

34) Sumikawa K, Parker I, and Miledi R. Partial purification and functional expression of brain mRNAs coding for neurotransmitter receptors and voltage-operated channels. Proc. Natl. Acad. Sci. U.S.A., 81;7994-7998, 1984. [PDF] 110

35) Sumikawa K, Parker I, and Miledi R. Messenger RNA from rat brain induces noradrenaline and dopamine receptors in Xenopus oocytes. Proc. Roy. Soc. B 223;255-260, 1984. [PDF] 29

36) Parker I, Gundersen CB, and Miledi R. A transient inward current elicited by hyperpolarization during serotonin activation in Xenopus oocytes. Proc. Roy. Soc. B 223;279-292, 1985. [PDF] 88

37) Miledi R, Parker I, and Zhu PH. Temperature dependence of calcium transients evoked by action potentials and voltage clamp pulses in frog twitch muscle fibres. Chinese Journal of Physiol. Sci. 1;25-30, 1985. [PDF]

38) Parker I, Sumikawa K, and Miledi R. Messenger RNA from bovine retina induces kainate and glycine receptors in Xenopus oocytes. Proc. Roy. Soc. B 225;99-106, 1985. [PDF] 21

39) Eusebi F, Miledi R, Parker I, and Stinnakre J. Post-synaptic calcium influx at the giant synapse of the squid during activation by glutamate. J. Physiol. 369;183-197, 1985. [PDF] 18

40) Parker, I., Gundersen, C.B., and Miledi, R. Intracellular Ca2+-dependent and Ca2+ independent responses of rat brain serotonin receptors transplanted to Xenopus oocytes. Neurosci. Res. 2;491-496, 1985. [PDF] 50

41) Parker I, Gundersen CB, and Miledi R. On the orientation of foreign neurotransmitter receptors in Xenopus oocytes. Proc. Roy. Soc. B 226;263-269, 1985. [PDF] 7

42) Parker I, Gundersen CB, and Miledi R. Actions of pentobarbital on rat brain receptors expressed in Xenopus oocytes. J. Neurosci. 6;2290-2297, 1986. [PDF] 92

43) Parker I and Miledi R. Changes in intracellular calcium and in membrane currents evoked by injection of inositol trisphosphate into Xenopus oocytes. Proc. Roy. Soc. Lond. B 228;307-315, 1986. [PDF] 145

44) Zhu PH, Parker I, and Miledi R. Minimal latency of calcium release in frog twitch muscle fibres. Proc. Roy. Soc. Lond. B 229;39-46, 1986. [PDF] 13

45) Parker I, Sumikawa K, and Miledi R. Neurotensin and substance P receptors expressed in Xenopus oocytes by messenger RNA from rat brain. Proc. R. Soc. B 229;151-159, 1986. [PDF] 33

46) Parker I and Zhu PH. Effects of hypertonic solutions on calcium transients in frog twitch muscle fibres. J. Physiol. 383;615-627, 1987. [PDF] 23

47) Miledi R, Parker I, and Sumikawa K. Oscillatory chloride currents evoked by temperature jumps during activation of muscarinic and serotonin receptors in Xenopus oocytes. J. Physiol. 383;213-229, 1987. [PDF] 34

48) Parker I, Ito Y, Kuriyama H, and Miledi R. B-adrenergic agonists and cyclic AMP reduce intracellular resting free calcium in ileum smooth muscle. Proc. Roy. Soc. Lond. B 230;207-214, 1987. [PDF] 38

49) Parker I and Miledi R. Inositol trisphosphate activates a voltage-dependent calcium influx in Xenopus oocytes. Proc. Roy. Soc. Lond. B 231;27-36, 1987. [PDF] 89

50) Parker I, Sumikawa K, and Miledi, R. Activation of a common effector system by different brain neurotransmitter receptors in Xenopus oocytes. Proc. Roy. Soc. Lond. B 231;37-45, 1987. [PDF] 37

51) Parker I and Miledi R. Injection of inositol 1,3,4,5-tetrakisphosphate into Xenopus oocytes generates a chloride current dependent upon intracellular calcium. Proc. R. Soc. Lond. B 232;59-70, 1987.[PDF] 58

52) Parker I and Miledi R. Tetrodotoxin-sensitive sodium current in native Xenopus oocytes. Proc. R. Soc. Lond. B 232;289-296, 1987. [PDF] 42

53) Parker I, Sumikawa K, Gundersen CB, and Miledi R. Expression of ACh-activated channels and sodium channels by messenger RNAs from innervated and denervated muscle. Proc. R. Soc. Lond. B 233;235-246, 1988.[PDF] 10

54) Parker I and Miledi R. A calcium-independent chloride current activated by hyperpolarization in Xenopus oocytes. Proc. R. Soc. Lond. B 233;191-199, 1988. [PDF] 79

55) Parker I, Sumikawa K, and Miledi R. Responses to GABA, glycine and b-alanine induced in Xenopus oocytes by messenger RNA from chick and rat brain. Proc. R. Soc. Lond. B 233;201-216, 1988. [PDF] 36

56) Parker I and Miledi R. Transient potassium current in native Xenopus oocytes. Proc. R. Soc. Lond. B 234;45-53, 1988.[PDF] 24

57) Carpenter MK, Parker I, and Miledi R. Expression of GABA and glycine receptors by messenger RNA from the developing rat cerebral cortex. Proc. R. Soc. Lond. B 234;159-170, 1988. [PDF] 43

58) Ito Y, Kuriyama H, and Parker I. Calcium transients evoked by electrical stimulation of smooth muscle from guinea-pig ileum recorded by the use of fura-2. J. Physiol. 407;117-134, 1988. [PDF] 20

59) Sumikawa K, Parker I, and Miledi R. Effect of tunicamycin on the expression of functional brain neurotransmitter receptors and voltage-operated channels in Xenopus oocytes. Molec. Brain Res. 4;191-199, 1988.[PDF] 29



1989-1994

60) Miledi R and Parker I. Latencies of membrane currents evoked in Xenopus oocytes by receptor activation, inositol trisphosphate and calcium. J. Physiol. 415;189-210, 1989. [PDF] 71

61) Parker I and Miledi R. Non-linearity and facilitation in phosphoinositide signalling studied by the use of caged inositol trisphosphate in Xenopus oocytes. J. Neurosci. 9;4068-4077, 1989. [PDF] 57

62) Miledi R, Parker I, and Woodward, R. Membrane currents elicited by divalent cations in Xenopus oocytes. J. Physiol. 417;173-195, 1989. [PDF] 57

63) Parker I, Panicker MM, and Miledi R. Serotonin receptor expressed in Xenopus oocytes by mRNA from brain mediate a closing of K+ membrane channels. Molec. Brain Res. 7;31-38, 1989. [PDF] 16

64) Parker I. Ionic and charge-displacement currents evoked by temperature jumps in Xenopus oocytes. Proc. R. Soc. Lond. B 237;379-387, 1989. [PDF] 10

65) Parker I and Ivorra I. A slowly inactivating potassium current in native oocytes of Xenopus laevis. Proc. R. Soc. Lond. B 238;369-381, 1990. [PDF] 27

66) Carpenter MK, Parker I, and Miledi R. Changes in messenger RNAs coding for neurotransmitter receptors and voltage-operated channels in the developing rat cerebral cortex. Devel. Biol. 138;313-323, 1990. [PDF] 12

67) Parker I and Ivorra I. Inhibition by Ca2+ of inositol trisphosphate-mediated Ca2+ liberation: A possible mechanism for oscillatory release of Ca2+. Proc. Natl. Acad. Sci. USA 87;260-264, 1990. [PDF] 270

68) Parker I and Ivorra I. Localized all-or-none calcium liberation by inositol trisphosphate. Science 250;977-979, 1990. [PDF] 180

69) Parker I and Ivorra I. Inositol tetrakisphosphate liberates stored Ca2+ in Xenopus oocytes and facilitates responses to inositol trisphosphate. J. Physiol. 433;207-227, 1991.[PDF] 51

70) Parker I. and Ivorra I. Caffeine inhibits inositol trisphosphate-mediated liberation of intracellular calcium in Xenopus oocytes. J. Physiol. 433;229-240, 1991. [PDF] 210

71) Tigyi G and Parker I. Microinjection into Xenopus oocytes: A precise semi-automatic instrument and optimal parameters for injection of mRNAs. J. Biochem. Biophys. Methods 22;243-252, 1991. [PDF] 2

72) Ivorra I, Gigg R, Irvine RF and Parker I. Inositol 1,3,4,6-tetrakisphosphate mobilizes calcium in Xenopus oocytes with high potency. Biochem. J. 273;317-321, 1991. [PDF] 39

73) Panicker MM, Parker I, and Miledi R. Receptors of the serotonin 1C subtype expressed from cloned DNA mediate the closing of K+ membrane channels encoded by brain mRNA. Proc. Natl. Acad. Sci. USA 88;2560-2562, 1991. [PDF] 33

74) Parker I and Yao Y. Regenerative release of calcium from functionally discrete subcellular stores by inositol trisphosphate. Proc. R. Soc. Lond. B 246: 269-274;1991. [PDF] 250

75) Carpenter MK, Parker I, and Miledi R. Messenger RNAs coding for receptors and channels in the cerebral cortex of adult and aged rats. Molecular Brain Research 13;1-5, 1992. [PDF]18

76) Ilyin V and Parker I. Effects of alcohol on responses evoked by inositol trisphosphate in Xenopus oocytes. J. Physiol. 448;339-354, 1992. [PDF] 61

77) Parker I and Ivorra I. Characteristics of membrane currents evoked by photorelease of inositol trisphosphate in Xenopus oocytes. Am. J. Physiol. 263; C154-165, 1992. [PDF] 53

78) Yao Y and Parker I. Potentiation of inositol trisphosphate-induced Ca2+ mobilization in Xenopus oocytes by cytosolic Ca2+. J. Physiol. 458:319-338, 1992. [PDF] 87

79) Parker I and Ivorra I. Confocal microfluorimetry of Ca2+ signals evoked in Xenopus oocytes by photo-released inositol trisphosphate. J. Physiol. 461:133-165, 1993. [PDF] 62

80) Yao Y and Parker I. Inositol trisphosphate-mediated Ca2+ influx into Xenopus oocytes triggers Ca2+ liberation from intracellular stores. J. Physiol. 468:275-296 1993. [PDF] 66

81) Yao Y and Parker I. Ca2+ influx modulates temporal and spatial patterns of inositol trisphosphate-mediated Ca2+ liberation in Xenopus oocytes. J. Physiol. 476:17-28, 1994.[PDF] 74

82) Callamaras N and Parker I. Inositol 1,4,5-trisphosphate receptors in Xenopus laevis oocytes: localization and modulation by Ca2+. Cell Calcium 15:60-72, 1994. [PDF] 62

83) Parker I and Yao Y. Relation between intracellular Ca2+ and Ca2+-activated Cl- current in Xenopus oocytes. Cell Calcium 15: 276-288, 1994. [PDF] 49

84) Ilyin V and Parker I. Role of cytosolic Ca2+ in inhibition of InsP3-evoked Ca2+ release in Xenopus oocytes. J. Physiol. 477: 503-509, 1994. [PDF] 44

 


1995-2000

85) Yao Y, Choi J, and Parker I. Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. J. Physiol. 482: 533-553, 1995. [PDF] 391

86) Parker I, Yao Y, and Ilyin V. Fast kinetics of calcium liberation induced in Xenopus oocytes by photoreleased inositol trisphosphate. Biophys. J. 70:222-237, 1996. [PDF] 65

87) Parker I and Yao Y. Ca2+ transients associated with openings of inositol trisphosphate-gated channels in Xenopus oocytes. J. Physiol. 491:663-668, 1996. [PDF] 151

88) Parker I, Choi J, and Yao Y. Elementary events of InsP3-induced Ca2+ liberation in Xenopus oocytes: Hot spots, puffs and blips. Cell Calcium 20:105-121. 1996. [PDF] 256

89) Parker I, Zang WJ, and Wier WG. Ca2+ sparks in cardiac cells involve synchronous Ca2+ release from multiple sites. J. Physiol. 497: 31-38. 1996. [PDF] 164

90) Parker I and Wier WG. Variability in frequency and characteristics of Ca2+ sparks at different release sites in rat ventricular myocytes. J. Physiol. 505:337-344, 1997. [PDF] 40

91) Parker I, Callamaras N, and Wier WG. A high-resolution, confocal laser scanning microscope and flash photolysis system for physiological studies. Cell Calcium 21: 441-452, 1997. [PDF] 74

92) Sun XP, Callamaras N, Marchant JS, and Parker I. A continuum of InsP3-mediated elementary Ca2+ signalling events in Xenopus oocytes. J. Physiol. 509: 67-80, 1998.[PDF] 284

93) Callamaras N, Marchant JS, Sun XP, and Parker, I. Activation and coordination of InsP3-mediated elementary Ca2+ events during global Ca2+ signals in Xenopus oocytes. J. Physiol. 509:81-91, 1998. [PDF] 180

94) Callamaras N, Sun XP, Ivorra I, and Parker I. Hemispheric asymmetry of macroscopic and elementary Ca2+ signals in Xenopus oocytes. J. Physiol. 511:395-405, 1998. [PDF] 31

95) Marchant JS and Parker I. Kinetics of elementary Ca2+ puffs evoked in Xenopus oocytes by different inositol(1,4,5) trisphosphate receptor agonists. Biochem. J. 334:505-509, 1998. [PDF] 27

96) Callamaras N and Parker I. Radial localization of InsP3-sensitive Ca2+ release sites in Xenopus oocytes resolved by axial confocal linescan imaging. J. Gen. Physiol. 113:199-213, 1999. [Abstract][PDF] 51

97) Leissring MA, Paul B, Parker I, Cotman CW, and LaFerla FM. Alzheimer's presenilin-1 mutation potentiates inositol 1,4,5-trisphosphate-mediated calcium signaling in Xenopus oocytes. J. Neurochem. 72: 1061-1068, 1999. 207

98) Leissring MA, Parker I, and LaFerla FM. Presenilin-2 mutations modulate amplitude and kinetics of IP3-mediated calcium signals. J. Biol. Chem. 274: 32535-32538, 1999. [Abstract] [PDF] 150

99) Marchant J, Callamaras N, and Parker I. Initiation of IP3-mediated Ca2+ waves in Xenopus oocytes. EMBO J. 18: 5285-5299, 1999. [Abstract] [PDF] 160

100) Callamaras N and Parker I. Construction of a confocal microscope for real-time x-y and x-z imaging. Cell Calcium 26:271-280, 1999. [Abstract] [PDF] 107

101) Callamaras N and Parker I. Ca2+-dependent activation of Cl currents in Xenopus oocytes is modulated by voltage. Am. J. Physiol. 278: C667-C675, 2000. [Abstract] [PDF] 25

102) Callamaras N and Parker I. Phasic characteristic of elementary Ca2+ release sites underlying quantal responses to IP3. EMBO J. 19: 3608-3617, 2000. [Abstract] [PDF] 72

103) Leissring MA, Yamasaki TR, Wasco W, Buxbaum JD, Parker I, and LaFerla FM. Calsenilin reverses presenilin-mediated enhancement of calcium signaling. PNAS 97: 8590-8593, 2000. [Abstract] [PDF] 106

104) Marchant JS and Parker I. Functional interactions in Ca2+ signaling over different time and distance scales. J. Gen. Physiol. 116: 691-696, 2000.[PDF] 28



2001-2005

105) Leissring MA, LaFerla FM, Callamaras N, and Parker I. Subcellular mechanisms of presenilin-mediated enhancement of calcium signaling. Neurobiology of Disease 8: 469-478, 2001. [PDF]
68

106) Marchant JS and Parker I. Role of elementary Ca2+ puffs in generating repetitive Ca2+ oscillations. EMBO J. 20: 65-76, 2001. [Abstract] [PDF] 224
107) Marchant JS and Parker I. Xenopus tropicalis oocytes as an advantageous model system for the study of intracellular Ca2+ signalling. Br. J. Pharmacol. 132: 1396-1410, 2001. [Abstract] [PDF] 20

108) Marchant JS, Stutzmann GE, Leissring MA, LaFerla FM, and Parker I. Multiphoton-evoked color change of DsRed as an optical highlighter for cellular and sub-cellular labeling. Nature Biotechnology 19: 645-649, 2001.[PDF]
116

109) Subramanian VS, Marchant JS, Parker I, and Said HM. Intracellular trafficking/membrane targeting of human reduced folate carrier expressed in Xenopus oocytes. Am. J. Physiol. 281: G1477–G1486, 2001. [PDF] 27

110) Nguyen QT, Callamaras N, Hsieh C, and Parker I. Construction of a two-photon microscope for video-rate Ca2+ imaging. Cell Calcium. 30(6): 383–393, 2001. [PDF] 140

111) Marchant JS, Ramos V and Parker I. Structural and functional relationship between mitochondria and elementary Ca2+ release sites in Xenopus oocytes. Am. J. Physiol. 282: C1374-C1386, 2002. [Abstract] [PDF] 44


112) Miller MJ, Wei SH, Parker I, and Cahalan MD. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science. 296: 1869-1873, 2002. [Abstract] [PDF] [Science Website] [Accompanying Perspective]
1185
Commentary in Nature Reviews Immunology
**Evaluated as 'Exceptional' by the Faculty of 1000**[view] **Identified as core paper in 'Fast Moving Front' in immunology by Thomson ISI**

113) Marchant JS, Subramanian VS, Parker I, and Said HM. Intracellular trafficking and membrane targeting mechanisms of the human reduced folate carrier in mammalian epithelial cells. J. Biol. Chem. 277: 33325-33333, 2002. [PDF] 45

114) Cahalan MD, Parker I, Wei SH, and Miller MJ, Two photon tissue imaging: Seeing the immune system in a fresh light. Nat. Rev. Immunol. 2:872-880, 2002. [PDF] 491

115) Subramanian VS, Marchant JS, Parker I, and Said HM. Cell biology of the human thiamine transporter-1 (hTHTR1): intracellular trafficking and membrane targeting mechanisms. J. Biol. Chem. 278:3976-3984, 2003. [PDF] 62

116) Stutzmann GE, LaFerla FM, and Parker I. Ca2+ signaling in mouse cortical neurons studied by 2-photon imaging and photoreleased IP3. J. Neurosci. 23:758-765, 2003. [PDF] 105

117) Miller MJ, Wei SH, Cahalan MD, and Parker I. Autonomous T cell trafficking examined in vivo using intravital 2-photon microscopy. Proc. Natl. Acad. Sci. USA 100:2604-2609, 2003. [Abstract] [PDF] 519
**Evaluated as 'Must Read' by the Faculty of 1000**[view]

118) Cahalan MD, Miller MJ, Wei SH, and Parker I. Real-time imaging of lymphocytes in vivo. Curr. Op. Immunol. 15: 372-377, 2003. [PDF] 94

119) Wei SH, Parker I, Miller M, and Cahalan MD. A stochastic view of lymphocyte motility and trafficking within the lymph node. Immunological Reviews. 195: 136-159, 2003. [PDF] 120

120) Demuro A and Parker I. Optical single-channel recording: imaging Ca2+ flux through individual N-type voltage-gated channels expressed in Xenopus oocytes. Cell Calcium 34(6): 499-509, 2003. [Absract] [PDF]
**Evaluated as 'Exceptional' by the Faculty of 1000**[view] 40

121) Dargan SL and Parker I. Buffer kinetics shape the spatiotemporal patterns of IP3-evoked Ca2+ signals. J.Physiol. 553:3, 775-78, 2003. [PDF] 146

122) Miller MJ, Hejazi AS, Wei SH, Cahalan MD, and Parker I. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl. Acad. Sci. 101 (4): 998-1003, 2004. [Abstract] [PDF] 461
**Evaluated as 'Should Read' by the Faculty of 1000**[view]

123) Stutzmann GE, Caccamo A, LaFerla FM, and Parker I. Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer's-Linked mutation in Presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. J. Neurosci. 24(2), 508-513, 2004. [PDF] 261

124) Dargan SL, Schwaller B, and Parker I. Spatiotemporal patterning of IP3-mediated Ca2+ signals by Ca2+-binding proteins. J Physiol. 556.2, 447-461, 2004. [PDF] 90

125) Demuro A, and Parker I. Imaging the activity and localization of single voltage-gated Ca2+ channels by total internal reflection fluorescense microscopy. Biophys.J. 86, 3250-3259, 2004. [PDF] 106

126) Thorn P, Fogarty KE, and Parker I. Zymogen granule exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity. Proc. Natl. Acad. Sci. 101:6774- 6779, 2004. [PDF] 126

127) Miller MJ, Safrina O, Parker I, and Cahalan MD. Imaging the single cell dynamics of CD4 T cell activation by dendritic cells in lymph nodes. J. Exp. Med. 200(7): 847–856, 2004. [Abstract] [PDF] 558

128.) Demuro A. and Parker I. Imaging single-channel calcium microdomains by total internal reflection microscopy. Biol. Res. 37(4): 675-9, 2004. [Abstract] [PDF] 17

129.) Stutzmann GE and Parker I. Dynamic multiphoton imaging: A live view from cells to systems. Physiology 20: 15-21, 2005. [PDF] 54

130) Thorn P and Parker I. Two phases of zymogen granule lifetime in mouse pancreas: ghost-granules linger after exocytosis of contents. J. Physiol. 563.2: 433-42, 2005. [PDF] 42

131) Shuai J and Parker I. Optical single-channel recording by imaging Ca2+ flux through individual channels: theoretical considerations and limits to resolution. Cell Calcium 37:283-299, 2005 .[PDF] 100

132. ) Ventura AC, Bruno L, Demuro A, Parker I, and Dawson SP. A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients. Biophys J., 2005 [PDF] 19

133.) Demuro A, Mina E, Kayed R, Milton SC, Parker I, and Glabe CG. Calcium dysregulation and membrane disruption as a ubiquitous neurotic mechanism of soluble amyloid oligomers. J. Biological Chemistry, 2005. [PDF]['Paper of the Week' Announcement by JBC ] 1059

134.) Demuro A and Parker I. Optical single-channel recording: imaging Ca2+ flux through individual ion channels with high temporal and spatial resolution. J. Biomed. Optics 10(1): 011002-1 - 1011002-8, 2005. [PDF] [Special Section Guest Editorial]
35

135.) Stutzmann GE. Calcium dysregulation, IP3 signaling, and Alheimer's Disease. Neuroscientist 11(2):110-115, 2005. [PDF]

136.) Okada T, Miller MJ, Parker I, Krummel MF, Hartley SB, O'Garra A, Cahalan MD, and Cyster JG. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3(6):e150, 2005. [
PDF] This publication is also available on Public Library of Science (PLoS) website, open-access journal online [link]. 572
**Evaluated as 'Recommended' by the Faculty of 1000** [
view]

137.) Zinselmeyer BH, Dempster J, Gurney AM, Wokosin D, Miller M, Ho H, Millington OR, Smith KM, Rush CM, Parker I, Cahalan M, Brewer JM, and Garside P. In situ characterization of CD4+ T cell behavior in mucosal and systemic lymphoid tissues during the induction of oral priming and tolerance. JEM vol. 201:1-9, 2005. [PDF] 163

138.) Demuro A and Parker I. "Optical patch-clamping": Single-channel recording by imaging Ca2+ flux through individual muscle acetylcholine receptor channels. JGP vol. 126(3):179-92, 2005. [PDF] Reviewed by J. Physiology "Highlights from the Literature" [PDF][weblink] 112

139.) Cahalan MD and Parker I. Close encounters of the first and second kind: T-DC and T-B interactions in the lymph node. Semin Immunol. Oct. 29, 2005. [PDF] 63

140.) Wei SH, Rosen H, Matheu MP, Sanna MG, Wang SK, Jo E, Wong CH, Parker I. and Chahalan MD. Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat Immunol. vol. 6:1228-1235, 2005. [PDF] 294
[Supplemental: movie1, movie7, movie8, and movie9] [
Supplemental link]
[
News and Views by Ley & Morris]
**Evaluated as 'Recommended' by the Faculty of 1000** [view]


2006-2010

141.) Daniel E Fraiman, Bernardo Pando, Sheila Dargan, Ian Parker, and Silvina M. Ponce Dawson. Analysis of puff dynamics in oocytes: interdependence of puff amplitude and inter-puff interval. Biophys. J. 90:3897-3907, 2006. [PDF] 44

142.) Stutzmann, G.E., Smith, I., Caccamo, A., Oddo, S., LaFerla, F.M. & Parker, I. Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult and aged Alzheimer's didsease mice. J. Neurosci. 26:5180-5189, 2006. [PDF] 290

143.) Parker, I. Plasmalemmal Ca2+ signaling in arterial smooth muscle: It's elementary. J. Gen.Physiol. 127: 605-609. 2006 [PDF] 3

144.) Cahalan, M., Parker, I. Imaging the choreography of lymphocyte trafficking and the immune response. Curr. Op. Immunol. 18: 1-7, 2006. [PDF] 67

145.) Sanna, M.G., Wang, S-K., Gonzalez-Cabrera, P.J., Don, A.m Marsolais, D., Matheu, M.P., Wei, S.H., Parker, I., Jo, E., Cheng, W-C., Cahalan, M.D. & Rosen, H. Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nature Chemical Biology. Online publication doi:10.1038/nchembio804, 2006. [PDF] 390
**Evaluated as 'Recommended' by the Faculty of 1000** [view]

146.) Rose, H.J., Dargan, S., Shuai, J. & Parker, I. 'Trigger' events precede calcium puffs in Xenopus oocytes. Biophys. J. 91:4024-4032, 2006. [PDF]. 48 **Evaluated as 'Recommended' by the Faculty of 1000** [view]

147.) Shuai, J., Rose, H.J. & Parker, I. The number and spatial distribution of IP3 receptors underlying calcium puffs in Xenopus oocytes. Biophys. J. 91:4033-4044, 2006. [PDF] .94

148.) Demuro, A. & Parker, I. Imaging single-channel calcium microdomains. Cell Calcium40:413-422, 2006. 2006. [PDF] 90

149.) Reudiger, S., Shuai, J.W., Huisinga, W., Nagaiha, Ch., Warnecke, G., Parker, I. & Falcke, M. Hybrid stochastic and deterministic simulations of calcium puffs. Biophys. J. 93:1847-1857. 2007. [PDF] 121

150.) Shuai, J.W., Pearson, J.E., Foskett, J.K., Mak, D.-O. & Parker, I. A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback. Biophys. J. 93:1151-1162, 2007. [PDF] 93

151). Stutzmann, G.E., Smith, I., Caccamo, A., Oddo, S., Parker, I. & LaFerla, F. Enhanced ryanodine-mediated calcium release in mutant PS1-expressing Alzheimer's mouse models. Ann. N.Y. Acad. Sci. 1097:265-277, 2007. [PDF] 114

152). Garrod, K.R., Wei, S.H., Parker, I. & Cahalan, M.D. Natural killer cells actively patrol peripheral lymph nodes forming stable conjugates to eliminate MHC-mismatched targets. Proc. Natl. Acad. Sci. USA 104:1208-12086, 2007. [PDF] 89

153). Wei, S.H., Safrina, O., Yu, Y., Garrod, K.Y., Cahalan, M.D. & Parker, I. Ca2+ signals in CD4+ T cells during early contact with antigen-bearing dendritic cells in lymph node. J. Immunol. 179:1586-1594, 2007. [PDF] 90

154). Matheu, M.P., Deane, J.A., Parker, I., Fruman, D.A. & Cahalan, M.D. Class IA phosphoinositide 3-kinase modulates basal lymphocyte motility in the lymph node. J. Immunol. 179:2261-2269, 2007. [PDF] 42 **Evaluated as 'Recommended' by the Faculty of 1000**

155) Ionescu, L., White, C., Cheung, K-H., Shuai, J., Parker, I., Pearson, J.E., Foskett, J.K., & Mak, D-O.O. Mode switching is the major mechanism of ligand regulation of InsP3 receptor calcium release channels. J. Gen. Physiol. 130:631-645, 2007. [PDF] 65

156) Demuro, A. & Parker, I. Multi-dimensional resolution of elementary Ca2+ signals by simultaneous multi-focal imaging. Cell Calcium43:367-374, 2007. [PDF] 36

157) Cahalan, M.D. & Parker, I. Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Ann. Rev. Immunol. 26:585-626, 2008 . [PDF with linked videos] [ARI website] 291

158) Green, K.N., Demuro, A., Akbari, Y., Hit, B.D., Smith, I.F., Parker, I. & LaFerla, F.M. SERCA pump activity is physiologically regulated by presenilin and regulates amyloid b production. J. Cell. Biol. 181:1107-1116, 2008. [PDF] Commentary in J.C.B. "Alzheimer's protein controls calcium's ins and outs" [PDF] Commentary on Alzforum 278

159) Smith, I.F., Wiltgen, S.M. & Parker, I. Localization of puff sites adjacent to the plasma membrane : Functional and spatial characterization of Ca2+ signaling in SH-SY5Y cells using membrane-permeant caged IP3. Cell Calcium45:65-76, 2009 [PDF].98

160) Shuai, J., Pearson, J. & Parker, I. Modeling Ca2+ feedback on a single inositol 1,4,5-trisphosphate receptor and its modulation by Ca2+ buffers. Biophysical Journal. 95:3738-3752, 2008. [PDF] 41

161) Penna, A., Demuro, A., Yeromin, A.V., Zhang, S.L., Safrina, O., Parker, I. & Cahalan, M.D. The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature Advanced online publication. 2008. DOI:10.1038/nature07338. [PDF] [supplementary info] . [Link to Nature website]. Selected as "Editor's Choice" by Science Signaling. **Evaluated as 'Must read' by the Faculty of 1000** [View] . 410

162) Matheu, M.P., Beeton, C., Garcia, A., Chi, V., Rangaraju, S., Safrina, O., Monaghan, K., Uemura, M.I., Li, D., Pal, S., de la Maza, L.M., Monuki, E., Flugel, A., Pennington, M.W., Parker, I., Chandy, K.G. & Cahalan, M.D. Imaging of effector memory T cells during a delayed-type hypersensitivity reaction and suppression by KV1.3 channel block. Immunity 29:602-614, 2008. [PDF] [News feature on UCI website]   199

163) Sen, D., Deerinck, T.J., Ellisman, M.H., Parker, I. & Cahalan, M.D. Quantum dots for tracking dendritic cells and priming an immune response in vitro and in vivo. PLoS ONE 3:e3290, 2008. [free access to article on PLoS website] 76

164) Yamasaki, M., Demuro, A. & Parker, I. cADPR modulates SERCA activity in Xenopus oocytes. Cell Calcium 45:293-299, 2009. PDF. 29

165) Smith, I.F. & Parker, I. Imaging the quantal substructure of single IP3R channel activity during Ca2+ ouffs in intact mammalian cells. Proc. Natl. Acad. Sci. USA 106:6404-6409, 2009. PDF .163

166) Zeller, s., Rudiger, S., Engel, H., Sneyd, J., Warnecke, G., Parker, I. & Falcke, M. Modeling of the modulation by buffers of Ca2+ release through clusters of IP3 receptors. Biophys. J. 97:992-1002, 2009. PDF 30

167) Smith, I.F., Wiltgen, S.W., Shuai, J & Parker, I. Ca2+ puffs originate from preestablished clusters of inositol trisphosphate receptors. Science Signaling 2: Issue 98: ra77, 2009. Abstract Free full-text access 74

168) Khoury, M.K., Parker, I. & Aswad, D.W. Acquisition of chemiluminescent signals from immunoblots with a digital single-lens reflex camera. Anal. Biochem. 397:129-131, 2010. PDF 49

169) Garrod, KR., Liu, F.C., Forrest, L.E., Parker, I., Kang, S.M. & Cahalan, M.D. NK cell patrolling and elimination of donor-derived dendritic cells favor indirect alloreactivity. J. Immunol. 184:2329-2336, 2010. PDF. 66

170) Demuro, A., Parker, I. & Stutzmann, G. Calcium signaling and amyloid toxicity in Alzheimer's disease. J. Biol. Chem.285:12463-12468, 2010. free full text access 374

171) Sen, D., Forrest, L., Kepler, T.B., Parker, I. & Cahalan, M.D. Selective and site-specific mobilization of dermal dendritic cells and Langerhans cells by Th-1 and Th-2-polarizing adjuvants. Proc. Natl. Acad. Sci. USA 107:8334-8339, 2010. PNAS website PDF 79

172) Yamasaki-Mann, M., Demuro, A. & Parker, I. Modulation of ER Ca2+ store filling by cADPR promotes IP3-evoked Ca2+ signals. J. Biol. Chem. 285:25053-61, 2010. PDF Free full text access 28

173) Reissner, K.J., Pu, L., Schaffhausen, J.H., Boyle, H.D., Smith, I.F., Parker, I. &Carew, TJ. A novel postsynaptic mechanism for heterosynaptic sharing of short-term plasticity. J. Neurosci. 30:8797-8806, 2010. PDF 10

174) Wiltgen, S.M., Smith, I.F. & Parker , I. Superresolution localization of single functional IP3R channels utilizing Ca2+ flux as a readout. Biophys. J. 99:437-446, 2010. PDF 38

175) Cardenas, C., Miller, R.A., Smith, I., Bui, T., Molgo, J., Muller, M., Vais, H., Cheung, K-H., Yang, J., Parker, I., Thompson, C.B., Birnbaum, M.J., Hallows, K.R. &Foskett, J.K. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142:270-283, 2010. PDF. Cell Website. Preview by Green & Wang PDF 692

176) Parker, I. & Smith, I.F. Recording single-channel activity of inositol trisphosphate receptors with a microscope, not a patch clamp. J. Gen. Physiol. 136:119-127, 2010. PDF Perspectives overview by Sharona Gordon PDF 53

2011-2015

177) Smith, I.F., Shuai, J., & Parker, I. Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes. Biophys. J. 100:pL37-39, 2011. PDF link to supplemental material. 70

178) Yamasaki-Mann, M., & Parker, I. Enhanced ER Ca2+ store filling by overexpression of SERCA2B promotes IP 3-evoked puffs. Cell Calcium 50:36-41 (2011). PDF 13

179) Demuro, A., Penna, A., Safrina, O., Yeromin, A.V., Amcheslavski, A., Cahalan, M.D. & Parker, I. Subunit stoichiometry of human Orai1 and Orai3 channels in closed and open states. PNAS 108:17832-7, 2011. PDF Abstract 91

180) Demuro, A., Smith, M. & Parker , I. Single-channel Ca2+ imaging implicates Ab 1-42 amyloid pores in Alzheimer's disease pathology. J. Cell Biol. 195:515-524, 2011. PDF Abstract 163 JCB 'Focal Point' by Ben Short Alzforum commentaries by Bezprozvanny, Kagan 

181) Thurley, K., Smith, I., Tovey, S.C., Taylor, C.W., Parker, I. & Falcke, M. Timescales of IP3-evoked Ca2+ spikes emerge from Ca2+ puffs only at the cellular level. Biophys. J. 101:2638-2644, 2011. PDF 47

182) Matheu, M.P., Cahalan, M.D. & Parker, I. Induction of an immune response for imaging antigen-peresenting cell/T cell interactions. Cold Spring Harbor Protocols 2011 pdb. prot5566. 4

183) Matheu, M.P., Cahalan, M.D. & Parker, I. General approach to adoptive transfer and cell labeling for immunoimaging. Cold Spring Harbor Protocols 2011 pdb. prot5565.9

184) Matheu, M.P., Cahalan, M.D. & Parker, I. In vivo lymph node imaging. Cold Spring Harbor Protocols 2011 pdb. prot5568. 7

185) Matheu, M.P., Cahalan, M.D. & Parker, I. In situ lymp node imaging. Cold Spring Harbor Protocols 2011 pdb. prot5567. 5

186) Dickinson, G.D., Swaminathan, D. & Parker, I. The probability of triggering calcium puffs is linearly related to the number of inositol trisphosphate receptors in a cluster. Biophys. J. 1021826-1836, 2012. PDF 40

187) Matheu, M.P., Su, Y., Greenberg, M.L., Blanc, C.A., Parker, I., Scott, D.W. & Cahalan, M. D.
Toll-like receptor 4-activated B cells out-compete Toll-like receptor 9-activated B cells to establish peripheral immunological tolerance. PNAS 109:E1258-1266, 2012 www.pnas.org/cgi/doi/10.1073/pnas.120515010917 Access the recommendation on F1000Prime

188) Ullah, G., Parker, I., Mak, D-O. & Pearson, J.E. Multi-scale data-driven modeling and observation of calcium puffs. Cell Calcium 52:152-160, 2012. PDF 38

189)  Yamasaki-Mann, M., Demuro, A. & Parker, I. Cytosolic [Ca2+] regulation of IP3-evoked puffs. Biochem. J., 449:167-173, 2013.  Biochem. J. website  PDF 8

190)     Dickinson, G.D. & Parker, I. Temperature-dependence of IP3-mediated local and global Ca2+ signals. Biophys. J. 104:386-396, 2013. BJ website PDF  8

191)     Adam P. Siebert, Zhongming Ma, Jeremy D. Grevet, Angelo Demuro, Ian Parker, and J. Kevin Foskett.  Structural and Functional Similarities of Calcium Homeostasis Modulator 1 (CALHM1) Ion Channel With Connexins, Pannexins and Innexins.  J. Biol. Chem. doi:10.1074/jbc.M112.409789, 2013. PDF 81 Access the recommendation on F1000Prime

192)     Demuro, A. & Parker, I.  Cytotoxicity of intracellular Ab42 amyloid oligomers involves Ca2+ release from the ER by stimulated production of inositol trisphosphate. J. Neurosci. 33:3824-3833, 2013. J. Neurosci website. PDF Commentary on Alzforum. Recommended as 'new finding' by Faculty of 1000 Prime. (View) 91 Access the recommendation on F1000Prime

193)   Matheu, M.P., Teijaro, J.R., Walsh, K.B., Greenberg, M.L., Marsolais, D., Rosen, H., Oldstone, M.B.A. & Cahalan, M.D. Three phases of CD8 T cell response in the lung following H1N1 influenza infection and sphingosine 1 phosphate agonist therapy. PLOS ONE 8(3): e58033. doi:10.1371/journal.pone.0058033, 2013. PDF PLOS ONE website 26

194)     Greenberg, M.L., Yu, Y., Leverrier, S., Zhang, S.L., Parker, I. & Cahalan, M.D. Orai1 Function is Essential for T Cell Homing to Lymph Nodes. J. Immunol. doi: 10.4049/​jimmunol.1202212 2013. Journal website   PDF 24

195) Dickinson, G.D. & Parker, I. Factors determining the recruitment of inositol trisphosphate receptor channels during calcium puffs. Biophys. J. 105:2474-2484, 2013. PDF 20

196) Greenberg, M.L., Weinger, J.G., Matheu, M.P., Carbajal, K.S., Parker, I., Macklin, W.B., Lane, T.L. & Cahalan, M.D.Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis. PNAS 111:E2349-2355, 2014. PNAS website PDF 24

197) Smith, I.F., Swaminathan, D., Dickinson, G.D. & Parker, I. Single-molecule tracking of inositol trisphosphate receptors reveals differing motilities and distributions. Biophys. J. 107:834-845, 2014. PDF 25 Access the recommendation on F1000Prime

198) Wiltgen, S.M., Dickinson, G.D., Swaminathan, D. & Parker, I. Termination of calcium puffs and coupled closings of inositol trisphosphate receptor channels. Cell Calcium. 56:157-168, 2014. PDF 24

199) Ellefsen, K., Settle, B, Parker, I. & Smith, I. An algorithm for automated detection, localization and measurement of local calcium signals from camera-based imaging. Cell Calcium.56:147-156, 2014. PDF 46

200) Sanderson, M.J., Smith, I., Parker, I. & Bootman, M.D.  Fluorescence Microscopy. Cold Spring Harbor Protoc. doi: 10.1101/pdb.top071795, 2014. PDF 125

201) Matheu, M.P., Cahalan, M.D. & Parker, I. Intravital Imaging of the Immune System. In: Advances in Intravital Microscopy, Ed. Weingert, R. Springer. 2014 PDF

202) Ruckl, M., Parker, I., Marchant, J., Nagaiah., C., Johenning, F.W. & Rudiger, S. Modulation of elementary calcium release modulates a transition from puffs to waves in an IP3R cluster model. PLOS Computational Biol. DOI: 10.1371/journal.pcbi.1003965. 2015.   Open access PLOS website  PDF 30
Access the recommendation on F1000Prime

203) Amcheslavsky, A., Wood, M.L., Yeromin, A.V., Parker, I., Freites, J.A., Tobias, D.T. & Cahalan, M.D. Molecular biophysics of Orai store-operated Ca 2+ channels. Biophys. J. 108:237-246, 2015. Journal website PDF 55

204) Matheu, M.P., Othy, S., Greenberg, M.L., Dong, T.X., Schujis, M., Deswarte, K., Hammad, H., Lambrecht, B.N., Parker, I. & Cahalan, M.D. Imaging regulatory T cell dynamics and CTLA-mediated suppression of T cell priming. Naure Communications DOI: 10.1038/ncomms7219, 2015. Journal website  PDF 78

205) Tan Z, Dai W, van Erp TG, Overman J, Demuro A, Digman MA, Hatami A, Albay R, Sontag EM, Potkin KT, Ling S, Macciardi F, Bunney WE, Long JD, Paulsen JS, Ringman JM, Parker I, Glabe C, Thompson LM, Chiu W, Potkin SG. Huntington's disease cerebrospinal fluid seeds aggregation of mutant huntingtin. Mol Psychiatry doi: 10.1038/mp.2015.81. 2015. Journal website PDF 39

206) Weinger JG, Greenberg ML, Matheu MP, Parker I, Walsh CM, Lane TE, Cahalan MD. Two-photon imaging of cellular dynamics in the mouse spinal cord. J Vis Exp.(96). doi: 10.3791/52580. 2015. Journal website 5

207) Lock JT, Ellefsen KL, Settle B, Parker I, Smith IF. Imaging local Ca2+ signals in cultured mammalian cells. J Vis Exp. (97). doi: 10.3791/52516. 2015. Journal website 11

208) Demuro, A. & Parker, I. Picomolar sensitivity to IP3 in Xenopus oocytes. Cell Calcium.58:511-517. 2015. Journal website PDF 4

209) Ellefsen, K.L., Dynes, J.L. & Parker, I. Spinning-Spot Shadowless TIRF Microscopy. PLoS ONE 10(8): e0136055.doi:101371/journal.pone.0136055. 2015. Journal website. PDF 26

210) Ullah, G., Demura, A., Parker, I. & Pearson, J.E. Analyzing and Modeling the kinetics of Amyloid Beta Pores Associated with Alzheimer's Disease Pathology. PLoS ONE 10(9):e0137357.doi10.1371/jouranl.pone.0137357. 2015. Journal Website. PDF 27

211) Schmunk, G., Boubion, B.J., Smith, I.F., Parker, I. & Gargus, J.J. Shared functional defect in IP3R-mediated calcium sgnaling in diverse monogenic autism syndromes. Nat. Transl. Psychiatry 5:e643; doi:10.1038/tp.2015.123. 2015. Journal Website. PDF UCI Press Release 26

212) Lock, J.T., Parker, I. & Smith. I.F. A comparison of fluorescent Ca2+ indicators for imaging local Ca2+ signals in cultured cells. Cell Calcium 58:638-648. 2015. Journal Website PDF 83

2016-present

213) Lock, J.T., Parker, I. & Smith, I. Communication of Ca2+ signals via tunneling membrane nanotubes is mediated by transmission of inositol trispohosphate through gap junctions. Cell Calcium 60: 266-272, 2016. doi:10.1016/ju.ceca.2016.06.004. Journal website ....PDF 25

214) Dickinson, G.D., Ellefsen, K.L., Dawson, S.P., Pearson, J.E. & Parker, I. Hindered cytoplasmic diffusion of IP3 restricts its cellular range of actions. Science Signaling Vol 9, issue 453,ra108 DOI:10.1126/scisignal.aag1625. (2016) Full text PDF Focus commentary by Luc Laybaert 46


215) Lock, J.T., Parker, I. & Smith, I. Comparison of Ca2+ puffs evoked by extracellular agonists and photoreleased IP3. Cell Calcium 63: 43-47, 2017. Journal website PDF 16

216) Schmunk, G., Nguyen, R.L., Ferguson, D.L., Kumar, K., Parker, I. & Gargus, J.J. High-throughput screen detects calcium signaling dysfunction in typical sporadic autism spectrum disorder. 7:40740 doi:10.1038/srep40740. 2017. Journal website PDF
8

217) Parker, I., Evans, K.T., Ellefsen, K., Lawson, D.A. & Smith, I. Lattice light sheet imaging of membrane nanotubes between human breast cancer cells in culture and in brain metastases. Nature Scientific Reports 7 : 11029 | DOI:10.1038/s41598-017-11223-y. 2017. Open Access 6

218) Tobias X Dong, Shivashankar Othy, Amit Jairaman, Jonathan Skupsky, Angel Zavala, Ian Parker, Joseph L Dynes, Michael D Cahalan. T cell calcium dynamics visualized in a ratiometric tdTomato-GCaMP6F transgenic reporter mouse. eLIFE 2017;6:e32417 doi: 10.7554/eLife.32417. 2017 Open Access 14

219) Tobias X Dong, Shivashankar Oth, Milton L Greenberg, Amit Jairaman, Chijioke Akunwafo, Sabrina Leverrier, Ying Yu, Ian Parker, Joseph L Dynes, Michael D Cahalan. Intermittent Ca2+ signals mediated by Orai1 regulate basal T cell motility. eLife 2017;6:e27827 doi: 10.7554/eLife.27827. 2017 Open Access 11.Access the recommendation on F1000Prime

220 ) Ellefsen, K.L. & Parker, I. Dynamic Ca2+ imaging with a simplified lattice light-sheet microscope: A sideways view of subcellular Ca2+ puffs. Cell Calcium. 2018 May;71:34-44. doi: 10.1016/j.ceca.2017.11.005. Epub 2017 Dec 1. PDF 20

221) Kyle Ellefsen, Alice Chang, Jamison L. Nourse, Jesse R Holt, Janahan Arulmoli, Armen Mekhdjian, Lisa A Flanagan, Alexander R Dunn, Ian Parker, Medha M Pathak. Piezo 1 flickers localize to hotspots of cellular traction forces. bioRxiv 294611; doi: https://doi.org/10.1101/294611, 2018

222) Ma Z, Taruno A, Ohmoto M, Jyotaki M, Lim JC, Miyazaki H, Niisato N, Marunaka Y, Lee RJ, Hoff H, Payne R, Demuro A, Parker I, Mitchell CH, Henao-Mejia J, Tanis JE, Matsumoto I, Tordoff MG, Foskett JK. CALHM3 Is Essential for Rapid Ion Channel-Mediated PurinergicNeurotransmission of GPCR-Mediated Taste. Neuron. 2018 Apr 13. pii: S0896-6273(18)30249-6. doi: 10.1016/j.neuron.2018.03.043. 2018 [Epub ahead of print] Journal website PDF Commentary by Yuki Oka in Neuron PDF 32

223) Shah, S., Demuro, A., Mak, D-O. D., Parker, I., Pearson, J.E. & Ullah, G. TraceSpecs: A software for automated idealization of noisy patch-clamp and imaging data. Biophys. J. 115;9-21. doi.org/10.1016/j.bpi.2018.06.003. PDF 5

224) Shah SI, Smith M, Swaminathan D, Parker I, Ullah G, Demuro A. Cell Speks: A software for Automated Detection and Analysis of Calcium Channels in live cells. Biophys J. 2018 Oct 25. pii: S0006-3495(18)31163-9. doi: 10.1016/j.bpj.2018.10.015. [Epub ahead of print] PDF 2

225) Kyle L. Ellefsen, Jeffrey T. Lock, Brett Settle, Carley A. Karsten & Ian Parker. Applications of FLIKA, a Python-based image processing and analysis platform, for studying local events of cellular calcium signaling. BBA Molecular Cell Research. 2018. doi.org/10.1016/j.bbamcr.2018.11.012. Journal website 5

226) Lock, J.T., Alzayady, K.J., Yule, D.I. & Parker, I. All three IP3 receptor isoforms generate Ca2+ puffs that display similar characteristice. Sci. Signal 11, eaau0344. doi:10.1126/scisignal.aau0334. 2018. Free online link PDF 13

227) Lock, J., Smith I.F. & Parker, I. Spatio-temporal patterning of Ca2+ signals by the subcellular distribution of IP3 and IP3 receptors. Seminars Call Dev. Biol. doi.org/10.1016/j.semcdb.2019.01.012. e-pub ahead of print. 2019. PDF Free online link 3

228) Kyle L. Ellefsen, Jesse R. Holt, Alice C. Chang, Jamison L. Nourse, Janahan Arulmoli,Armen H. Mekhdjian, Hamid Abuwarda, Francesco Tombola, Lisa A. Flanagan, Alexander R. Dunn,Ian Parker & Medha M. Pathak. Myosin-II mediated traction forces evoke localizedPiezo1-dependent Ca2+flickers. Communications Biology. https://doi.org/10.1038/s42003-019-0514-3. 2019. PDF Open Access 14

229) Divya Swaminathan, George D. Dickinson, Angelo Demuro, Ian Parker. Noise analysis of calcium image data. Cell Calcium. e-pub ahead of print https://doi.org/10.1016/j.ceca.219.102152. 2019. Link to online article PDF 1

230) Jeffrey T. Lock & Ian Parker. IP3-mediated global Ca2+ signals arise through two temporally and spatially distinct modes of Ca2+ release.Elife. 2020 May 12;9:e55008. doi: 10.7554/eLife.55008. eLife website1

231) Horia Vais, Min Wang, Karthik Millilankaraman, Riley Payne, Chris McKennan,Jeffrey T. Lock, Lynn A Spruce, Carly Fiest, Matthew Y Chan, Ian Parker, Steven H. Seeholzer, J. Kevin Foskett, Don-On Daniel Mak. ER-luminal [Ca 2+] Regulation of InsP 3 Receptor Gating Mediated by an ER-luminal Peripheral Ca 2+-binding Protein.2020;9:e53531. doi:10.7554/eLife.53531 eLife website
Commentary by Amanda Wahl and David Yule An inside job: Annexin 1A-Inositol 1,4,5-trisphosphate receptor interaction conveys endoplasmic reticulum luminal Ca2+ sensitivity. Cell Calcium doi.org/10.1016/j.ceca.2020.102250 PDF

232) Shivashankar Othy, Amit Jairaman, Joseph L. Dynes, Tobias X. Dong, Cornelia Tune, Andriy V. Yeromin, Angel Zavala, Chijioke Akunwafo, Fangyi Chen, Ian Parker and Michael D. Cahalan. Regulatory T cells suppress Th17 cell Ca2+ signaling in the spinal cord during murine autoimmune neuroinflammation. Proceedings of the National Academy of Sciences Jul 2020, 202006895; DOI: 10.1073/pnas.2006895117. PNAS website PDF
Commentary by Liewei Wang and Stefan Feske. Seeing is Believing: Visualizing immune cells and calcium signals at different stages of neuroinflammation. PNAS 2020 117 (34) 20360-20362

233) Amit Jairaman, Shivashankar Othy, Joseph L. Dynes, Andriy V. Yeromin, Angel Zavala, Milton L. Greenberg, Jamison L. Nourse, Jesse R. Holt, Stuart M. Cahalan, Francesco Marangoni, Ian Parker, Medha M. Pathak, Michael D. Cahalan. Piezo1 channels restrain regulatory T cells but are dispensable for effector CD4+ T cell responses. Sci. Adv. 2021; 7 : eabg5859. PDF Link to online article

234) Ian Parker, Clarke Slater, Stuart Cull-Candy & Angela Vincent. Ricardo Miledi; 15 September 1927 - 18 December 2017. Biog. Mem. Royal Soc. 2021. doi.org/10.1098/rsbm.2021.0020. PDF free access online article

235) Ian Parker and Jeffrey Lock. Termination of Ca2+ puffs during IP3-evoked global Ca2+ signals. Cell Calcium 100:102494. 2021. PDF Journal website (open access)

236) Jairaman A, McQuade A, Granzotto A, Kang YJ, Chadarevian JP, Gandhi S, Parker I, Smith I, Cho H, Sensi SL, Othy S, Blurton-Jones M, Cahalan MD. TREM2 regulates purinergic receptor-mediated calcium signaling and motility in human iPSC-derived microglia. Elife. 2022 Feb 22;11:e73021. doi: Journal Website (open access) PDF

237) IreneVorontsova, Jeffrey T.Lock, IanParker. KRAP is required for diffuse and punctate IP3-mediated Ca2+ liberation and determines the number of functional IP3R channels within clusters. Cell Calcium. 2022 doi.org/10.1016/j.ceca.2022.102638 PDF Open access

238) Anna Pensalfini , Abdul Rahim Umar , Charles Glabe , Ian Parker , Ghanim Ullah, and Angelo Demuro. Intracellular Injection of Brain Extracts from Alzheimer’s Disease Patients Triggers Unregulated Ca2+ Release fromIntracellular Stores That Hinders Cellular Bioenergetics. Cells 2022, 11, 3630. https://doi.org/10.3390/cells11223630 Open Access




Last updated 05/21 /2023

 

 


1146 Mc Gaugh Hall
University of California, Irvine
Irvine, CA 92697-4550
Lab Tel: 949-824-7833
back to >Publications
. Please send enquiries to ianparkerlabweb@gmail.com