Role of cytosolic Ca^{2+} in inhibition of $InsP_3$ -evoked Ca^{2+} release in Xenopus oocytes

Victor Ilyin and Ian Parker*

The Laboratory of Cellular and Molecular Neurobiology, Department of Psychobiology, University of California, Irvine, CA 92717, USA

- 1. Calcium liberation induced in *Xenopus* oocytes by flash photorelease of inositol 1,4,5-trisphosphate ($\operatorname{Ins} P_3$) from a caged precursor was monitored by confocal microfluorimetry. The object was to determine whether inhibition of Ca^{2+} release seen with paired flashes arose as a direct consequence of elevated cytosolic free [Ca^{2+}].
- Responses evoked by just-suprathreshold test flashes were not inhibited by subthreshold conditioning flashes, but were strongly suppressed when conditioning flashes were raised above threshold.
- 3. Inhibition at first increased progressively as the inter-flash interval was lengthened to about 2 s and thereafter declined, with a half-recovery at about 4 s.
- Intracellular injections of Ca²⁺ caused relatively slight inhibition of InsP₃-evoked signals, even when cytosolic free [Ca²⁺] was elevated to levels similar to those at which strong inhibition was seen in paired-flash experiments.
- 5. Recovery from inhibition was not appreciably slowed when Ca²⁺ was injected to raise the free Ca²⁺ level between paired flashes.
- 6. We conclude that inhibition of InsP₃-evoked Ca²⁺ liberation is not directly proportional to cytosolic free Ca²⁺ level and that recovery from inhibition in paired-pulse experiments involves factors other than the decline of cytosolic [Ca²⁺] following a conditioning response.

A characteristic feature of inositol 1,4,5-trisphosphate $(Ins P_3)$ -mediated signalling is that this second messenger induces cyclical release of Ca2+ ions from intracellular stores in the form of repetitive Ca2+ spikes and waves (Berridge, 1993). Since Ca²⁺ spikes persist in the presence of stable concentrations of non-metabolizable analogues, $InsP_3$ -gated Ca^{2+} release channels must show a transient inactivation or adaptation in the maintained presence of agonist (Wakui, Potter & Petersen, 1989; Pavne & Potter, 1991; Yao & Parker, 1994). Such a refractory period has been well characterized in various cells including Xenopus oocytes (Berridge, 1988; Parker & Ivorra, 1990, 1993), Limulus ventral photoreceptors (Payne, Walz, Levy & Fein, 1988; Payne, Flores & Fein, 1990; Levitan, Hillman & Payne, 1993; Levy & Payne, 1993) and hepatocytes (Ogden, Capiod, Walker & Trentham, 1990). Intracellular elevations of $Ins P_3$, produced by microinjection or photorelease from a caged precursor, evoke a transient release of intracellular Ca²⁺ which terminates within a few hundred milliseconds or shorter, and is followed by a refractory period of several seconds during which responses to a second pulse of $Ins P_3$ are depressed.

Several mechanisms have been proposed to account for this depression and its subsequent recovery. A widely held view is that feedback inhibition on the $InsP_3$ receptor by cytosolic Ca2+ ions limits further release of Ca2+, and that recovery of sensitivity to $InsP_3$ follows the subsequent decline of cytosolic Ca2+ as it is re-sequestered. In support of this idea, $Ins P_3$ -mediated Ca^{2+} release is inhibited by intracellular injections of Ca2+ (Parker & Ivorra, 1990; Payne et al. 1990), recovery from inhibition is accelerated by injections of EGTA (Levy & Payne, 1993) and high cytosolic Ca2+ levels inhibit Ca2+ flux through InsP3-gated channels (Bezprozvanny, Watras & Erlich, 1991; Finch, Turner & Goldin, 1991). Another possibility is that depression of Ca2+ release may arise from the depletion of intralumenal Ca²⁺ within the stores, either because little Ca^{2+} remains or because the $InsP_3$ receptor is regulated by intralumenal Ca²⁺ (Missiaen, Taylor & Berridge, 1992). Finally, the depression might be an inherent property of the $InsP_3$ receptor, triggered by its activation independently of any resulting Ca2+ flux.

The present experiments were designed primarily to test the role of cytosolic free Ca²⁺ in the onset and recovery of depression of InsP₃-evoked Ca²⁺ release in Xenopus oocytes. As before (Parker & Ivorra, 1990), we used flash photolysis of caged InsP₃ to evoke reproducible and precisely timed elevations of intracellular $Ins P_3$. Those experiments, however, largely used Ca2+-activated Clcurrents as an intrinsic reporter of cytosolic free Ca²⁺ level, whereas a fluorescent Ca²⁺ indicator (calcium green-5N) now provided a more direct measure. Furthermore, fluorescence was recorded from a virtual point source (about 1 fl volume) within the oocyte by use of a confocal microfluorimeter. This minimized problems of spatial inhomogeneities of Ca2+ distribution, since diffusional equilibration would occur within this tiny volume in less than 1 ms (Parker & Ivorra, 1993). The main result was that elevations of cytosolic $\mathrm{Ca^{2+}}$ resulting from $\mathrm{Ins}P_3$ -evoked Ca²⁺ liberation and from intracellular injections of exogenous Ca2+ were not comparable in their ability to inhibit InsP3-evoked Ca2+ release, suggesting that inhibition is not a simple function of the cytosolic free Ca²⁺ level.

METHODS

Experiments were done on immature ovarian oocytes of albino Xenopus laevis, obtained by surgical removal from frogs anaesthetized by placing them in a 0.17 % aqueous solution of MS-222 (3-aminobenzoic acid ethyl ester) for 15 min. The frogs were allowed to recover after removing the oocytes. Oocytes were treated with collagenase to remove enveloping cells and placed in a recording chamber superfused with Ringer solution (composition in mm: NaCl, 120; KCl, 2; CaCl, 1.8; Hepes, 5; at pH about 7.0) at room temperature. The animal hemisphere was viewed through a coverslip forming the base of the chamber by an Olympus IMT2 inverted microscope equipped with a ×40 objective (numerical aperture 1.3). Procedures for preparation of oocytes, intracellular microinjection, photolysis of intracellularly loaded caged ${\rm Ins}P_3$, and confocal microfluorimetry of intracellular free ${\rm Ca}^{2+}$ were similar to those described previously (Parker, 1992; Parker & Ivorra, 1993; Yao & Parker, 1993, 1994). In brief, oocytes were loaded with calcium green-5N and with caged InsP3 (myo-inositol 1,4,5-trisphosphate, P4(5)-1-(2-nitrophenyl)ethyl ester) to respective final intracellular concentrations of about 40 and 2 μm. Photolysis of caged InsP₃ was induced by applying flashes of UV light (340-400 nm), the durations of which were set by an electronic shutter and which were focused on the oocyte as a spot of about 20 µm diameter, at the same focal depth and concentric with the confocal recording spot. Recordings of Ca²⁺-dependent fluorescence were made by a Noran Odyssey confocal microscope (Noran Instruments, Middleton, WI, USA) operated in the stationary spot (i.e. nonscanning) mode and interfaced to the inverted microscope through the phototube. Fluorescence excited by the laser spot (488 nm) focused about 5 μm into the oocyte was monitored at wavelengths > 510 nm by a photomultiplier behind a confocal aperture, and signals were recorded on floppy disk by a digital oscilloscope after low-pass filtering at 100-200 Hz. Calcium green-5N was used as the Ca2+ indicator since its low affinity (12 μm; Yao & Parker, 1994) minimizes interference with normal Ca2+ homeostasis. Fluorescence signals are expressed as fractional changes above the resting baseline $(\Delta F/F)$ and a calibration in terms of free Ca²⁺ concentration was obtained by measuring the maximal fluorescence $(F_{\rm max})$ obtained after microinjecting saturating amounts of Ca²⁺. $F_{\rm max}$ was about 5 times greater than the largest Ins P_3 -evoked signals, so that $\Delta F/F$ would be almost linearly proportional to free Ca²⁺ concentration for the responses described here. As a rough guide, a $\Delta F/F$ value of 0·5 is equivalent to about 1·7 μ m free Ca²⁺ and the peak Ca²⁺ level following a just-suprathreshold flash was about 2 μ m.

In experiments where the basal cytosolic free Ca^{2+} concentration was changed, a micropipette filled with 100 mm $CaCl_2$ was inserted through the oocyte so that its tip lay $20-40~\mu m$ inward from the bottom surface of the oocyte viewed by the inverted microscope. Ionophoretic current was applied to either retain Ca^{2+} ions within the pipette, or to inject Ca^{2+} . The pipette tip was located $20-30~\mu m$ to the side of the confocal recording spot, to avoid mechanical damage near the recording area and so that the concentration gradient of Ca^{2+} away from the pipette would be shallow near the measuring spot.

Calcium green-5N was obtained from Molecular Probes Inc. (Eugene, OR, USA) and caged $InsP_3$ from Calbiochem (La Jolla, CA, USA). All other reagents were from Sigma Chemical Co, St Louis, MO, USA.

RESULTS

Inhibition of $InsP_3$ -mediated Ca^{2+} signals with paired flashes

The basic phenomenon is illustrated in Fig. 1A, which shows confocal Ca²⁺ signals evoked by paired photorelease of $InsP_3$. A certain threshold level of $InsP_3$ (about 60 nm; Parker & Ivorra, 1992) is required to evoke Ca²⁺ liberation, and the test flashes were set to a duration (10 ms) slightly greater than that (8 ms) required to just evoke a response (Fig. 1B). These test flashes were preceded 4 s earlier by conditioning flashes of progressively increasing duration. Conditioning flashes shorter than threshold had little effect on the amplitude of the test response, or caused a slight potentiation (Fig. 1C). However, once the conditioning flash duration was lengthened sufficiently to just evoke Ca²⁺ release, the test response was dramatically altered. A just-threshold conditioning flash (8 ms) caused the rising phase of the test response to be greatly slowed, although its peak amplitude was little diminished, and a further small increase to 9 ms caused the virtual abolition of the test response.

Time course of onset and recovery from inhibition

The kinetics of the inhibitory process were investigated by experiments like that in Fig. 2A, where the interval between two identical, just-suprathreshold flashes was varied. To allow responses evoked by the test flash to be visualized in isolation, we recorded control responses to the conditioning flash alone and subtracted them from paired responses (right-hand traces in Fig. 2A). The decay of the

Figure 1. Ca²⁺ release evoked by a conditioning flash causes nearly all-or-none inhibition of release to a subsequent, just-suprathreshold test flash

A, traces show confocal Ca^{2+} transients evoked by paired light flashes delivered to oocytes loaded with caged $Ins P_3$ and calcium green-5N. Timing of the flashes can be seen from stimulus artifacts, and the duration of the test (second) flash was always 10 ms. The duration of the conditioning flash (fl) was varied, and is indicated next to each trace. The top record shows a control response to a 10 ms test flash alone. B, size of responses to the conditioning flash as a function of its duration. C, size of responses to the test flash (f2) as a function of duration of the conditioning flash.

Figure 2. Time course of onset and recovery from inhibition of $\operatorname{Ins} P_3$ -evoked Ca^{2+} liberation A, traces on left show point confocal measurements of intracellular free Ca^{2+} signals evoked by paired light flashes. The timing of the flashes can be seen from the stimulus artifacts and inter-flash intervals are given next to the traces, in seconds. All light flashes were of identical intensity and duration (50 ms). Traces on the right show the additional signal resulting from the second (test) flash in each pair, and were derived by subtracting the response evoked by a conditioning flash alone from that evoked by a pair of flashes. B, peak sizes of Ca^{2+} signals evoked by test flashes (f2) as a function of inter-flash interval. Each point is a single measurement from traces like those in A, and data are included from 5 occytes (different symbols). Responses are expressed as a percentage of a control response evoked by an identical flash following a 2 min rest period.

fluorescence signals occurred at a similar rate to responses evoked by flash photolysis of caged Ca^{2+} (Ivorra & Parker, 1990) and by transient entry of Ca^{2+} through voltage-gated channels (Yao & Parker, 1992), indicating that it is largely determined by reuptake of Ca^{2+} ions and their diffusion from the stimulated area. Since the rising phase of the $InsP_3$ -evoked Ca^{2+} signals was rapid in comparison to their decay, their peak height then reflects the integral of the Ca^{2+} flux, i.e. the total amount of Ca^{2+} liberated. A plot of

peak size of the response to the test flash as a function of inter-flash interval is shown in Fig. 2B, expressed as a percentage of the response to the (identical) conditioning flash.

The onset of inhibition was not instantaneous. Test flashes at intervals $< 500 \,\mathrm{ms}$ evoked increments of $\mathrm{Ca^{2+}}$ about 50 % of the control size, which then declined to a minimum as the interval was lengthened to about 2 s. Subsequently, responses recovered over several seconds,

Figure 3. Inhibition of Ca²⁺ release with paired flashes is not mimicked by injecting Ca²⁺ to elevate cytosolic free Ca²⁺

Traces show confocal fluorescence signals evoked by photolysis flashes delivered when indicated by the arrowheads, and fluorescence at the resting Ca^{2+} level is indicated by thin lines. A, two identical photolysis flashes were applied at an interval of 2 s, resulting in substantial inhibition of the response to the second flash. B, following a 2 min recovery period, Ca^{2+} was injected through an ionophoretic pipette to elevate cytosolic Ca^{2+} at the measuring spot to a level about the same as that at the time of the second flash in A (dashed line). An identical test flash given after holding this Ca^{2+} level for about 5 s still evoked a response almost as large as the control. C and D, elevation of cytosolic Ca^{2+} between paired photolysis flashes does not appreciably slow recovery from inhibition. Superimposed traces in C show responses to two identical pairs of photolysis flashes. The lower trace shows control responses. In the upper trace, Ca^{2+} was injected through a micropipette for the time indicated by the bar, to elevate the cytosolic free Ca^{2+} level during the inter-flash interval. D, responses to paired photolysis flashes (identical to those in C) at an interval of 1 s. The response to the second flash was greatly depressed, even though the Ca^{2+} level at the time of the flash was no greater than that produced by the Ca^{2+} injection (dashed line).

and were half-maximal after intervals of about 4–5 s. Appreciable recovery was seen only at times when the tail of Ca²⁺ signal evoked by the conditioning flash had fallen by 75% or more from the peak, and responses then recovered rapidly, even though the further decline of Ca²⁺ was slight (e.g. 4 and 6 s traces in Fig. 2A). A final point is that the incremental Ca²⁺ signals evoked by test flashes at short intervals showed a plateau, different to the usual roughly exponential decay. It is not clear whether this arose because the mechanisms removing Ca²⁺ from the cytosol became saturated, or because the test flash evoked a more persistent liberation of Ca²⁺.

Injections of Ca²⁺ do not mimic paired-flash depression

The results in Fig. 2 already suggested that inhibition of $\operatorname{Ins} P_3$ -mediated Ca^{2+} release could not be an instantaneous function of cytosolic free Ca^{2+} level, since inhibition developed over about 2 s following a conditioning flash, even though peak Ca^{2+} levels were attained within a few hundred milliseconds. To test this point further, and to examine whether recovery from inhibition was contingent upon removal of Ca^{2+} from the cytosol, we compared the effects of elevating cytosolic free Ca^{2+} either by conditioning light flashes or by injecting Ca^{2+} through a micropipette.

In Fig. 3A and B a pair of identical light flashes were first applied at an interval (2 s) giving pronounced inhibition (Fig. 3A). Following a 2 min rest period, Ca^{2+} was injected into the oocyte to raise the free Ca^{2+} at the confocal spot to a level comparable to that at the time the test flash was delivered in A (dashed line). An identical test

flash then evoked a Ca^{2+} transient much greater than the second of the paired responses and only slightly smaller (5%) than the control response evoked at resting Ca^{2+} level (Fig. 3B). Similar results were obtained in seventeen trials in six oocytes. In all cases, Ca^{2+} injections resulted in inhibitions of $\text{Ins}P_3$ -evoked Ca^{2+} signals that were slight in comparison to the paired-flash inhibition seen at comparable Ca^{2+} levels.

These results are summarized in Fig. 4, which plots the inhibition resulting from conditioning flashes (filled symbols) and Ca^{2+} injections (open symbols) as a function of the elevation of basal Ca^{2+} level at the time of the test flash. Data are shown for both the peak size of the fluorescence signal (Fig. 4A), which gives a measure of the amount of calcium released by the test flash, and the rate of rise of fluorescence (Fig. 4B), which is proportional to the rate of Ca^{2+} efflux. Although Ca^{2+} injections did inhibit both the amount (cf. Parker & Ivorra, 1990) and rate of $InsP_3$ -induced Ca^{2+} liberation, the extent of the suppression was small in comparison to that following conditioning flashes when Ca^{2+} levels were elevated to comparable extents.

A final experiment demonstrated that recovery from inhibition was not slowed when injections were applied to elevate the $\operatorname{Ca^{2+}}$ level between paired flashes. This is illustrated in Fig. 3C and D, which is representative of results in thirteen trials in five oocytes. Figure 3C shows superimposed responses to two pairs of identical flashes. During the first pair, $\operatorname{Ca^{2+}}$ was allowed to decline normally following the conditioning response, and the interval was chosen to allow substantial recovery of the test response

Figure 4. Comparison of inhibition of $\operatorname{Ins} P_3$ -evoked Ca^{2+} release produced by injection of exogenous Ca^{2+} and by Ca^{2+} liberation evoked by a conditioning flash Graphs show sizes (A) and rates of rise (B) of fluorescence responses to test flashes, expressed as a percentage of the control response evoked by the same flash after a 2 min period at the resting Ca^{2+} level. Horizontal axes indicate the basal Ca^{2+} level at the time of the test flash, expressed as a

percentage of the peak Ca^{2+} level (roughly $2 \mu M$) during control responses to light flashes. Open symbols are measurements following injections of Ca^{2+} . Filled symbols are measurements from the same five occytes following conditioning photolysis flashes.

(72 % control). After a 2 min rest period the paired flashes were again repeated, but a sustained ionophoretic current was now applied when indicated by the bar, so as to maintain the Ca^{2+} signal at a high level during most of the inter-flash interval. Despite this, the response to the test flash was only slightly reduced (by 20 %) compared to the test response in the control pair. In particular, the extent of inhibition was negligible compared to that observed when the inter-flash interval was shortened so that the Ca^{2+} elevation resulting from the conditioning flash was similar to that produced by the Ca^{2+} injection (Fig. 3D).

DISCUSSION

Experiments using light flashes to photolyse caged ${\rm Ins} P_3$ showed that InsP₃-evoked Ca²⁺ liberation in Xenopus oocytes was strongly inhibited by prior Ca2+ liberation evoked by a conditioning flash. However, conditioning flashes just below the threshold to evoke all-or-none Ca²⁺ liberation (Parker & Ivorra, 1993) failed to cause depression, suggesting that inhibition does not arise simply from the presence of $Ins P_3$. Also, the inhibition cannot be attributed to consumption of caged $InsP_3$ during the conditioning flash, since only a negligible part of the total would be consumed (Parker & Ivorra, 1992), and because justsubthreshold flashes failed to induce inhibition. Instead, inhibition appears to be concomitant upon the opening of the InsP₃-gated Ca²⁺ release channels or on the resulting redistribution of Ca2+ ions from intracellular stores to cytosol.

One explanation for the inhibition could be that the stores become depleted during the conditioning response, so that little Ca²⁺ remains available for release by a following test flash. This seems unlikely, because inhibition was not maximal until 2s after a conditioning flash, whereas the Ca²⁺ stores presumably ceased emptying after the 200 ms rising phase of the Ca²⁺ transient. Further, the slowing of Ca²⁺ release by a just-suprathreshold flash without appreciable reduction in size of the test response (8 ms trace in Fig. 1A) is consistent with an inhibition of the release machinery, but not with depletion of stored Ca²⁺.

Another possibility arises from the finding that the Ins P₃ receptor–channel is inhibited by relatively high levels of cytosolic free Ca²⁺ (Payne et al. 1990; Parker & Ivorra, 1990; Bezprozvanny et al. 1991; Finch et al. 1991; Levitan et al. 1993; Levy & Payne, 1993). Although our results confirm this effect, the inhibition of a flash-evoked response by exogenous elevation of cytosolic [Ca²⁺] was too small to account for the paired-flash inhibition. Also, inhibition developed over about 2 s following a conditioning flash, even though the Ca²⁺ level declined for much of this time. Thus, it is unlikely that the time course of recovery from inhibition in Xenopus oocytes is determined simply by the decline in cytosolic Ca²⁺ lingering from the conditioning response, as proposed for

Limulus photoreceptors (Levy & Payne, 1993). A concern is whether the fluorescence signal accurately reflects Ca²⁺ levels in the immediate vicinity of the $InsP_3$ receptors and whether fluorescence signals evoked by Ca2+ injections and $Ins P_3$ -evoked release are directly comparable. For example, if release occurred from discrete 'hot spots' that did not happen to lie directly under the confocal point, the inhibition seen with $Ins P_3$ could involve a higher level of Ca²⁺ than sensed in our recordings and the 'matching' level of Ca²⁺ produced by injection would be too small. This was not the case, since recordings at many random locations gave similar results, and confocal video imaging of flashevoked Ca²⁺ signals showed that peak Ca²⁺ levels were almost uniform throughout the area exposed to the photolysis spot. However, the free Ca2+ concentration near the mouth of an open Ca2+ channel may well have been much higher than the bulk measure reported by even a tiny confocal spot, so that inhibition could have been initially triggered by a transient, locally high Ca2+ level close to the activated $InsP_3$ receptor.

What then might be the mechanism underlying inhibition and responsible for its time course? A key observation is that over-expression of a Ca2+-ATPase in oocytes led both to a more rapid decay of Ca2+ spikes evoked by a persistent elevation of $InsP_2$ and to an increase in spike frequency (Camacho & Lechleiter, 1993), indicating that the duration of the refractory period following a spike is influenced by Ca²⁺ movements. However, in our pairedflash experiments, elevated cytosolic Ca2+ had little influence on recovery from inactivation. We can consider two explanations for this apparent discrepancy. One is that binding of Ca²⁺ to sites mediating inhibition of the InsP₃ receptor is enhanced when $InsP_3$ is also bound to the receptor. The recovery of sensitivity following a photolysis flash would then depend upon both the decline of cytosolic free [Ca²⁺] and the decline of $InsP_3$ as it was metabolized and diffused away from the site of photorelease. Failure of exogenous elevations of cytosolic [Ca2+] to mimic pairedflash inhibition would then be explained as a result of lower affinity of the Ca²⁺ binding site in the initial absence of $Ins P_3$. Another possibility is that refilling of $Ins P_3$ sensitive stores regulates recovery from inactivation. As argued above, it is unlikely that inhibition results simply because less Ca²⁺ is available for release, but the possibility remains that intralumenal Ca²⁺ levels may modulate InsP₃ receptor-channel function (Missiaen et al. 1992).

REFERENCES

Berridge, M. J. (1988). Inositol trisphosphate-induced membrane potential oscillations in *Xenopus* oocytes. *Journal of Physiology* 403, 589–599.

Berridge, M. J. (1993). Inositol trisphosphate and calcium signalling. *Nature* 261, 315–325.

Bezprozvanny, I., Watras, J. & Erlich, B. (1991). Bell-shaped calcium–response curves of Ins(1,4,5)P₃- and calcium–gated channels from endoplasmic reticulum of cerebellum. *Nature* 351,751–754.

- CAMACHO, P. & LECHLEITER, J. D. (1993). Increased frequency of calcium waves in *Xenopus laevis* oocytes that express a calcium-ATPase. *Science* 260, 226–229.
- FINCH, E. A., TURNER, T. J. & GOLDIN, S. M. (1991). Calcium as coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252, 443–446.
- IVORRA, I. & PARKER, I. (1990). Simultaneous recording of membrane currents and intracellular free Ca²⁺ transients evoked by photolysis of caged compounds in *Xenopus* oocytes. *Journal of Physiology* **424**, 31*P*.
- LEVITAN, I., HILLMAN, P. & PAYNE, R. (1993). Fast desensitization of the response to InsP₃ in *Limulus* ventral photoreceptors. *Biophysical Journal* **64**, 1354–1360.
- LEVY, S. & PAYNE, R. (1993). A lingering elevation of Ca₁ accompanies inhibition of inositol 1,4,5 trisphosphate-induced Ca release in *Limulus* ventral photoreceptors. *Journal of General Physiology* 101, 67–84.
- MISSIAEN, L., TAYLOR, C. W. & BERRIDGE, M. J. (1992). Luminal Ca²⁺ promoting spontaneous Ca²⁺ release from inositol trisphosphate-sensitive stores in rat hepatocytes. *Journal of Physiology* 455, 623–640.
- Ogden, D. C., Capiod, T., Walker, J. W. & Trentham, D. R. (1990). Kinetics of the conductance evoked by noradrenaline, inositol trisphosphate or Ca²⁺ in guinea-pig isolated hepatocytes. *Journal of Physiology* 422, 585-602.
- PARKER, I. (1992). Caged intracellular messengers and the inositol trisphosphate pathway. Neuromethods 20, 369–393.
- Parker, I. & Ivorra, I. (1990). Inhibition by Ca²⁺ of inositol trisphosphate-mediated Ca²⁺ liberation: A possible mechanism for oscillatory release of Ca²⁺. Proceedings of the National Academy of Sciences of the USA 87, 260–264.
- PARKER, I. & IVORRA, I. (1992). Characteristics of membrane currents evoked by photoreleased inositol trisphosphate in Xenopus oocytes. American Journal of Physiology 263, C154-165.
- PARKER, I. & IVORRA, I. (1993). Confocal microfluorimetry of Ca²⁺ signals evoked in *Xenopus* oocytes by photoreleased inositol trisphosphate. *Journal of Physiology* 461, 133–165.
- PAYNE, R., FLORES, T. M. & FEIN, A. (1990). Feedback inhibition by calcium limits the release of calcium by inositol trisphosphate in *Limulus* ventral photoreceptors. *Neuron* 4, 547–555.
- Payne, R. & Potter, B. V. L. (1991). Injection of inositol trisphosphorothicate into *Limulus* ventral photoreceptors causes oscillations of free cytosolic calcium. *Journal of General Physiology* 97, 1165–1186.
- PAYNE, R., WALZ, B., LEVY, S. & FEIN, A. (1988). The localization of Ca release in *Limulus* photoreceptors and its control by negative feedback. *Philosophical Transactions of the Royal* Society B 320, 359-370.
- Wakui, M., Potter, B. V. L. & Petersen, O. H. (1989). Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentrations. *Nature* 339, 317–320.
- YAO, Y. & PARKER, I. (1992). Potentiation of inositol trisphosphateinduced Ca²⁺ mobilization in *Xenopus* oocytes by cytosolic Ca²⁺. *Journal of Physiology* 458, 319–338.
- YAO, Y. & PARKER, I. (1993). Inositol trisphosphate-mediated Ca²⁺ influx into Xenopus oocytes triggers Ca²⁺ liberation from intracellular stores. Journal of Physiology 468, 275–296.
- YAO, Y. & PARKER, I. (1994). Ca²⁺ influx modulation of temporal and spatial patterns of inositol trisphosphate-mediated Ca²⁺ liberation in *Xenopus* oocytes. *Journal of Physiology* 476, 17–28.

Acknowledgements

We thank Dr Yong Yao for helpful comments and assistance with some experiments and Dr Joel Kaiser for helpful discussion. This work was supported by grant GM48071 from the US Public Health Service.

Author's present address

Dr V. Ilyin: Acea Pharmaceuticals Inc., Hitachi Chemical Research Center, 1003 Health Sciences Road West, Irvine, CA 92715, USA. Permanent address: Laboratory of Nerve Cell Biophysics, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia.

Received 9 March 1994; accepted 19 April 1994.