Modulation of cytosolic Ca²⁺ signalling by cADPR independent of ryanodine receptors

Michiko Yamasaki, Angelo Demuro, Ian Parker Department of Neurobiology and Behavior, University of California, Irvine, U.S.A.

The intracellular second messenger, cyclic ADP-ribose (cADPR) regulates Ca^{2+} release from internal Ca^{2+} stores in a wide range of cells, where it is thought to promote Ca^{2+} liberation through ryanodine receptors. However, there is evidence suggesting that cADPR may also modulate SERCA pump activity. We examined this hypothesis by using *Xenopus* oocytes, which lack ryanodine receptors, to study the effects of cADPR on Ca^{2+} transients evoked by photoreleased IP_3 and by influx through plasma membrane channels.

Oocytes were injected either with Ca²⁺ indicator (Fluo-4) and caged-IP₃; or with these compounds plus caged-cADPR. Ca²⁺ transients evoked by photoreleased IP₃ showed no change in amplitude with concomitant photorelease of cADPR, but their decay rate was accelerated. Moreover, this change in kinetics appears to result from modulation of Ca²⁺ sequestration rather than a direct action on IP₃R because the decay of signals evoked by transient Ca²⁺ influx through nicotinic receptor/channels expressed in the oocyte membrane was similarly accelerated.

Our results suggest that cADPR acts through multiple pathways to regulate cellular Ca^{2+} signalling via actions on both Ca^{2+} release channels and sequestration mechanisms.

Presenting author: Michiko Yamasaki e-mail: michiko@uci.edu